Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Plane Waves and Math Review - Homework 01

Syracuse University

This is the first homework assignment for Lasers and Optomechanics at Syracuse University.
It is due January 23, 2026

You will need to complete the questions in this jupyter notebook and submit it via gitlab

Tech References

  1. Jupyter notebook tutorial

  2. Latex reference

  3. Markdown Cheat Sheet

%matplotlib widget
from ipywidgets import *
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

plt.style.use('dark_background')

fontsize = 14
mpl.rcParams.update(
    {
        "text.usetex": True,
        "figure.figsize": (9, 6),
        "figure.autolayout": True,
        "font.family": "serif",
        "font.serif": "georgia",
        # 'mathtext.fontset': 'cm',
        "lines.linewidth": 1.5,
        "font.size": fontsize,
        "xtick.labelsize": fontsize,
        "ytick.labelsize": fontsize,
        "legend.fancybox": True,
        "legend.fontsize": fontsize,
        "legend.framealpha": 0.7,
        "legend.handletextpad": 0.5,
        "legend.labelspacing": 0.2,
        "legend.loc": "best",
        "axes.edgecolor": "#b0b0b0",
        "grid.color": "#707070",  # grid color"
        "xtick.color": "#b0b0b0",
        "ytick.color": "#b0b0b0",
        "savefig.dpi": 80,
        "pdf.compression": 9,
    }
)

1Approximations Review

In this course, you will need to remember and use some basic approximations. These approximations all come from taking the Taylor Expansion of a function f(x)f(x) about some point x=ax = a:

f(x)xaf(a)+f(a)(xa)+12!f(a)(xa)2=n=0f(n)(a)n!(xa)nf(x)\Bigr|_{x \rightarrow a} \approx f(a) + f'(a) (x-a) + \dfrac{1}{2!} f''(a) (x-a)^2 = \displaystyle \sum_{n=0}^\infty \dfrac{f^{(n)}(a)}{n!}(x - a)^n

1.1Question 1: Binomial Approximation

The binomial approximation to first order in xx is as follows:

(1+x)n1+nx.\begin{align} (1 + x)^{n} \approx 1 + n x. \end{align}

Question 1A

Derive the binomial approximation using the Taylor Expansion to first order about x=0x = 0

Question 1B

Find the second and third order terms of the binomial approximation

Question 1C

Plot the binomial function on x[1,1]x \in [-1, 1] for n=12n = \dfrac{1}{2}.
Compare to plots of the first, second, and third order binomial approximation.
At what x>0x > 0 does each approximation fail, becoming greater than 5% error?

Question 1A Solution: (This would be the cell you fill out)

Let

f(x)=(1+x)n,f(x) = (1 + x)^n,

then at x=0x = 0,

f(0)=1.f(0) = 1.

Then the first derivative f(x)f'(x) is

f(x)=n(1+x)n1f'(x) = n (1 + x)^{n-1}

and the derivative evaluated at x=0x = 0 is

f(0)=nf'(0) = n

The Taylor Expansion to first order then becomes

f(x)x0f(0)+f(0)x =1+nx\begin{align} f(x)\Bigr|_{x \rightarrow 0} &\approx f(0) + f'(0) x\\~\\ &= 1 + n x \end{align}

Question 1B Solution:

Taking the second and third derivatives, and evaluating at 0 yields

f(x)=n(n1)(1+x)n2f(x)=n(n1)(n2)(1+x)n3 f(0)=n(n1)f(0)=n(n1)(n2)\begin{align} f''(x) &= n (n-1) (1 + x)^{n-2} \\ f'''(x) &= n (n-1) (n-2) (1 + x)^{n-3} \\~\\ f''(0) &= n (n-1)\\ f''(0) &= n (n-1) (n-2) \end{align}

The second order expansion is

f(x)x0f(0)+f(0)x+12!f(0)x2 =1+nx+12n(n1)x2\begin{align} f(x)\Bigr|_{x \rightarrow 0} &\approx f(0) + f'(0) x + \dfrac{1}{2!} f''(0) x^2\\~\\ &= 1 + n x + \dfrac{1}{2} n (n-1) x^2 \end{align}

The third order expansion is

f(x)x0f(0)+f(0)x+12!f(0)x2+13!f(0)x3 =1+nx+12n(n1)x2+16n(n1)(n2)x3\begin{align} f(x)\Bigr|_{x \rightarrow 0} &\approx f(0) + f'(0) x + \dfrac{1}{2!} f''(0) x^2 + \dfrac{1}{3!} f'''(0) x^3\\~\\ &= 1 + n x + \dfrac{1}{2} n (n-1) x^2 + \dfrac{1}{6} n (n-1) (n-2) x^3 \end{align}
def binom(xx:float, nn:float):
    """Binomial function (1 + xx)^nn
    
    Inputs:
    -------
    xx: float or array of floats
        binomial variable
    nn: float
        binomial exponent

    Output:
    -------
    binom: float or array of floats
        binomial expansion
    """
    return (1 + xx)**nn
# Parameter definitions.  Protip: never make single-letter variable names
nn = 0.5
xx = np.linspace(-1, 2, 100)

taylor0 = 1
taylor1 = taylor0 + nn * xx
taylor2 = taylor1 + 0.5 * nn * (nn - 1) * xx**2
taylor3 = taylor2 + (1/6) * nn * (nn - 1) * (nn - 2) * xx**3
# At which x does the error become greater than 10%?
# First, we divide the approximation by the real function,
# Second, we subtract 1 from that ratio
# Third, we take the absolute value of the subtraction
# Fourth, we look for the first location where the final result is greater than 0.1
# Fifth, we find where x > 0
# Sixth, we take the intersection of the indices found
# Seventh, we find the first index where the error is large for plotting
error = 0.05
model = binom(xx, nn)

xx_errors = np.array([])
for taylor in [taylor1, taylor2, taylor3]:
    abs_errors = np.abs(taylor/model - 1) # final result
    indices_error = np.argwhere(abs_errors > error)
    indices_x = np.argwhere(xx > 0)
    
    indices_final = np.intersect1d(indices_error, indices_x)
    index = indices_final[0]
    
    xx_errors = np.append(xx_errors, xx[index])
print(xx_errors)
[0.87878788 1.3030303  1.42424242]
/var/folders/t1/fq8mx5mj0bx4kn1hlgb4hh840000gn/T/ipykernel_46996/3003632814.py:14: RuntimeWarning: divide by zero encountered in divide
  abs_errors = np.abs(taylor/model - 1) # final result
fig, s1 = plt.subplots(1)

s1.plot(xx, binom(xx, nn), label="Binomial Function")
s1.plot(xx, taylor1, ls="--", label="Taylor 1")
s1.plot(xx, taylor2, ls="--", label="Taylor 2")
s1.plot(xx, taylor3, ls="--", label="Taylor 3")

s1.axvline(x=0, label=f"$x = 0$")

for ii, xx_error in enumerate(xx_errors):
    s1.axvline(x=xx_error, color=f"C{ii+1}",ls=":", label=f"Taylor {ii+1} Error")

s1.set_title("Binomial Approximations about $x = 0$ for $n = " + f"{nn}" + "$")
s1.set_xlabel("$x$")
s1.set_ylabel("$f(x)$")
s1.legend()
s1.grid()
plt.show()
Loading...

1.2Question 2: Sine and Cosine Approximations

Repeat the Taylor Expansion approximations for
A. sine and
B. cosine
to second order about x=0x = 0.
Make the plots, but you don’t need to calculate the 5% error point.

Question 2A Solution: Sine Approximation

Set f(x)=sin(x)f(x) = \sin(x), then

f(x)=cos(x),f(x)=sin(x)f'(x) = \cos(x), \quad f''(x) = -\sin(x)

Evaluating the Taylor Series about x=0x=0:

sinxf(0)+f(0)x+12!f(0)x2sinx0+x+0sinxx\begin{align} \sin{x} &\approx f(0) + f'(0) x + \dfrac{1}{2!} f''(0) x^2\\ \sin{x} &\approx 0 + x + 0\\ \sin{x} &\approx x \end{align}
# Changing the plotting parameter from x -> yy
yy = np.linspace(-np.pi, np.pi, 100)

taylor_sine1 = yy
taylor_sine3 = taylor_sine1 - yy**3 / 6
fig, s1 = plt.subplots(1)

s1.plot(yy, np.sin(yy), label=r"$ \sin(x) $")
s1.plot(yy, taylor_sine1, ls="--", label=r"$x$")
s1.plot(yy, taylor_sine3, ls="--", label=r"$x - x^3/6$")

s1.set_title("Sine Approximations about $x = 0$")
s1.set_xlabel("$x$")
s1.set_ylabel(r"$\sin(x)$")
s1.legend()
s1.grid()
plt.show()
Loading...

Question 2B Solution: Cosine Approximation

Set f(x)=cos(x)f(x) = \cos(x), then

f(x)=sin(x),f(x)=cos(x)f'(x) = -\sin(x), \quad f''(x) = -\cos(x)

Evaluating the Taylor Series about x=0x=0:

cosxf(0)+f(0)x+12!f(0)x2cosx1+0+x22cosx1+x22\begin{align} \cos{x} &\approx f(0) + f'(0) x + \dfrac{1}{2!} f''(0) x^2\\ \cos{x} &\approx 1 + 0 + \dfrac{x^2}{2}\\ \cos{x} &\approx 1 + \dfrac{x^2}{2} \end{align}
# Changing the plotting parameter from x -> yy
zz = np.linspace(-np.pi, np.pi, 100)

taylor_cosine0 = np.ones_like(zz)
taylor_cosine2 = taylor_cosine0 - zz**2 / 2
fig, s1 = plt.subplots(1)

s1.plot(zz, np.cos(yy), label=r"$ \sin(x) $")
s1.plot(zz, taylor_cosine0, ls="--", label=r"$1$")
s1.plot(zz, taylor_cosine2, ls="--", label=r"$1 - x^2/6$")

s1.set_title("Cosine Approximations about $x = 0$")
s1.set_xlabel("$x$")
s1.set_ylabel(r"$\cos(x)$")
s1.legend()
s1.grid()
plt.show()
Loading...

1.3Question 3: Complex Number Review

Question 3A:

Plot the following complex function on a domain of ϕ[0,2π]\phi \in [0, 2 \pi]:

z1(ϕ)=2+eiϕz2(ϕ)=32eiϕz3(ϕ)=e(σ+iω)t\begin{align} z_1(\phi) &= 2 + e^{i \phi}\\ z_2(\phi) &= \dfrac{3}{2 - e^{i \phi}}\\ z_3(\phi) &= e^{(\sigma + i \omega) t} \end{align}

where for z4z_4, σ=0.5\sigma = -0.5, and ω=1\omega = 1.

Question 3B:

Calculate the magnitude r(ϕ)r(\phi) and argument θ(ϕ)\theta(\phi) for each ziz_i.

Question 3C:

Calculate the velocity of the phasors with respect to ϕ\phi, and draw them for each ziz_i evaluated at ϕ={0,π2,π,3π2}\phi = \left\{0, \dfrac{\pi}{2}, \pi, \dfrac{3\pi}{2} \right\}

Question 3D:

What is the primary difference between z1z_1 and z2z_2?

Question 3E:

For z3z_3, substitute tt for ϕ\phi, and calculate the normalized time derivatives : z3˙z3\dfrac{\dot{z_3}}{z_3}, z3¨z3\dfrac{\ddot{z_3}}{z_3}

and find expressions for the normalized real polar coordinates r˙r,r¨r,θ˙,θ¨\dfrac{\dot{r}}{r}, \dfrac{\ddot{r}}{r}, \dot{\theta}, \ddot{\theta}.

Discuss how the expressions you found for the polar coordinates relate to the path you plotted for z3z_3 in part A.

What happens if σ=+0.5\sigma = +0.5?

# For Part A, define the complex functions for plotting
def z1(phi):
    return 2 + np.exp(1j * phi)

def z2(phi):
    return 3 /(2 - np.exp(1j * phi))

def z3(phi, sigma=-0.5, omega=1):
    return np.exp((sigma + 1j * omega) * phi)
# For Part C, define the derivatives of the complex functions for plotting
def dz1(phi):
    return 1j * np.exp(1j * phi)

def dz2(phi):
    return 3 * 1j * np.exp(1j * phi) / (2 - np.exp(1j * phi))**2

def dz3(phi, sigma=-0.5, omega=1):
    return (sigma + 1j * omega) * np.exp((sigma + 1j * omega) * phi)
phis = np.linspace(0, 2*np.pi, 100)
aa = 2
bb = 1

sigma = -0.5
omega = 1

# Make convenient ploting vectors
plot_z1_re = np.real(z1(phis))
plot_z1_im = np.imag(z1(phis))
plot_z2_re = np.real(z2(phis))
plot_z2_im = np.imag(z2(phis))
plot_z3_re = np.real(z3(phis, sigma, omega))
plot_z3_im = np.imag(z3(phis, sigma, omega))

Question 3A Solution

fig, s1 = plt.subplots(1)

line1, = s1.plot(plot_z1_re, plot_z1_im, label=r"$ z_1 $")
line2, = s1.plot(plot_z2_re, plot_z2_im, lw=2, ls=":", label=r"$ z_2 $")
line3, = s1.plot(plot_z3_re, plot_z3_im, ls="-", label=r"$ z_3 $")

s1.set_xlim([-3,3])
s1.set_ylim([-3,3])

s1.set_aspect('equal')

s1.set_title("Complex Number Plots")
s1.set_xlabel("Real")
s1.set_ylabel(r"$i$")
s1.legend()
s1.grid()
plt.show()
Loading...

Question 3B Solution:

z1z_1:

z1(ϕ)=2+eiϕz1(ϕ)=2+cosϕ+isinϕ\begin{align} z_1(\phi) &= 2 + e^{i \phi}\\ z_1(\phi) &= 2 + \cos\phi + i \sin\phi \end{align}
r1(ϕ)=z1z1r1(ϕ)=(2+eiϕ)(2+eiϕ)r1(ϕ)=5+4cosϕθ1(ϕ)=arctan2(sinϕ,2+cosϕ)\begin{align} r_1(\phi) &= \sqrt{z_1 z_1^*}\\ r_1(\phi) &= \sqrt{(2 + e^{i \phi})(2 + e^{-i \phi})}\\ r_1(\phi) &= \sqrt{ 5 + 4 \cos\phi }\\ \theta_1(\phi) &= \arctan2(\sin\phi, 2 + \cos\phi) \end{align}

z2z_2:

z2(ϕ)=32eiϕz2(ϕ)=32eiϕ2eiϕ2eiϕz2(ϕ)=3(2eiϕ)54cosϕz2(ϕ)=63cosϕ54cosϕ+i3sinϕ54cosϕ\begin{align} z_2(\phi) &= \dfrac{3}{2 - e^{i \phi}}\\ z_2(\phi) &= \dfrac{3}{2 - e^{i \phi}} \dfrac{ 2 - e^{-i \phi} }{ 2 - e^{-i \phi} }\\ z_2(\phi) &= \dfrac{ 3 (2 - e^{-i \phi}) }{ 5 - 4 \cos\phi }\\ z_2(\phi) &= \dfrac{ 6 - 3 \cos\phi }{ 5 - 4 \cos\phi } + i \dfrac{ 3 \sin\phi }{ 5 - 4 \cos\phi } \end{align}
r2(ϕ)=z2z2r2(ϕ)=(32eiϕ)(32eiϕ)r2(ϕ)=954cosϕθ2(ϕ)=arctan2(3sinϕ54cosϕ,63cosϕ54cosϕ)θ2(ϕ)=arctan2(sinϕ,2cosϕ)\begin{align} r_2(\phi) &= \sqrt{z_2 z_2^*}\\ r_2(\phi) &= \sqrt{\left( \dfrac{3}{2 - e^{i \phi}} \right)\left( \dfrac{3}{2 - e^{-i \phi}} \right)}\\ r_2(\phi) &= \sqrt{ \dfrac{9}{5 - 4 \cos\phi } }\\ \theta_2(\phi) &= \arctan2\left(\dfrac{ 3 \sin\phi }{ 5 - 4 \cos\phi }, \dfrac{ 6 - 3 \cos\phi }{ 5 - 4 \cos\phi }\right)\\ \theta_2(\phi) &= \arctan2\left( \sin\phi, 2 - \cos\phi \right) \end{align}

z3z_3:

z3(ϕ)=e(σ+iω)ϕz3(ϕ)=eσϕeiωϕz3(ϕ)=eσϕcos(ωϕ)+ieσϕsin(ωϕ)\begin{align} z_3(\phi) &= e^{(\sigma + i \omega) \phi}\\ z_3(\phi) &= e^{\sigma \phi} e^{i \omega \phi}\\ z_3(\phi) &= e^{\sigma \phi} \cos(\omega \phi) + i e^{\sigma \phi} \sin(\omega \phi) \end{align}
r3(ϕ)=z3z3r3(ϕ)=(eσϕeiωϕ)(eσϕeiωϕ)r3(ϕ)=eσϕθ3(ϕ)=arctan2(sin(ωϕ),cos(ωϕ))θ3(ϕ)=ωϕ\begin{align} r_3(\phi) &= \sqrt{z_3 z_3^*}\\ r_3(\phi) &= \sqrt{ (e^{\sigma \phi} e^{i \omega \phi}) (e^{\sigma \phi} e^{-i \omega \phi}) }\\ r_3(\phi) &= e^{\sigma \phi}\\ \theta_3(\phi) &= \arctan2(\sin(\omega \phi), \cos(\omega \phi))\\ \theta_3(\phi) &= \omega \phi \end{align}

Question 3C Solution

dz1dϕ=ieiϕdz2dϕ=3ieiϕ(2eiϕ)2dz3dϕ=(σ+iω)e(σ+iω)ϕ\begin{align} \dfrac{dz_1}{d\phi} &= ie^{i\phi}\\ \dfrac{dz_2}{d\phi} &= \dfrac{3ie^{i\phi}}{(2-e^{i\phi})^2}\\ \dfrac{dz_3}{d\phi} &= (\sigma + i\omega) e^{(\sigma + i\omega)\phi} \end{align}
fig, [ax1,ax2,ax3] = plt.subplots(1, 3, figsize=(12,4))

for ii, func, dfunc, ax in zip(np.arange(1,4),[z1,z2,z3],[dz1,dz2,dz3],[ax1,ax2,ax3]):
    text = f"$ z_{ii} $"
    dtext = f"$ dz_{ii} $"
    color = f"C{ii}"

    zz_re = np.real(func(phis))
    zz_im = np.imag(func(phis))

    line1, = ax.plot(zz_re, zz_im, color=color, label=text)
    
    for phi in np.linspace(0, 3*np.pi/2, 4):
        zz0 = func(phi)
        dz0 = dfunc(phi)
        ax.arrow(np.real(zz0), np.imag(zz0), np.real(dz0), np.imag(dz0), shape='full', color=f"C{ii+3}", lw=1, length_includes_head=True, head_width=.10, zorder=2, label=dtext)
        dtext = ""

    if ii < 3:
        ax.set_xlim([-3,4])
        ax.set_ylim([-3,4])
    else:
        ax.set_xlim([-1,2])
        ax.set_ylim([-1,2])        
    
    ax.set_aspect('equal')
    
    ax.set_title(text)
    ax.set_xlabel("Real")
    ax.set_ylabel(r"$i$")
    ax.legend()
    ax.grid()
plt.show()
Loading...

Question 3D Solution

The primary difference between z1z_1 and z2z_2 is the evolution rate, i.e. their derivatives. Both z1z_1 and z2z_2 trace out perfect circles centered at z0=2z_0 = 2 with radius r0=1r_0 = 1.
However, the rate at which the circles are traced out are vastly different, which can be seen in the velocities plotted in the solution to Question 3C.

z1z_1 traces out the circle at a constant velocity. z2z_2 starts fast at ϕ=0\phi = 0, and slows down immediately, yielding a minimum velocity at ϕ=π\phi = \pi.

Question 3E Solution

Subbing in ϕt\phi \rightarrow t, and taking the time derivatives:

z3(t)=e(σ+iω)t z3˙(t)=(σ+iω)e(σ+iω)t z3¨(t)=(σ+iω)2e(σ+iω)t\begin{align} z_3(t) &= e^{(\sigma + i \omega) t}\\~\\ \dot{z_3}(t) &= (\sigma + i \omega)e^{(\sigma + i \omega) t}\\~\\ \ddot{z_3}(t) &= (\sigma + i \omega)^2 e^{(\sigma + i \omega) t} \end{align}

which implies

z3˙z3=σ+iω z3¨z3=(σ+iω)2=σ2ω2+i2σω\begin{align} \dfrac{\dot{z_3}}{z_3} &= \sigma + i \omega\\~\\ \dfrac{\ddot{z_3}}{z_3} &= (\sigma + i \omega)^2 = \sigma^2 - \omega^2 + i 2 \sigma \omega \end{align}

Recalling from class the generalized time-derivative expressions for polar coordinates:

z˙z=r˙r+iθ˙z¨z=[r¨rθ˙2]+i[θ¨+2θ˙r˙r]\begin{align} \dfrac{\dot{z}}{z} &= \dfrac{\dot{r}}{r} + i \dot{\theta}\\ \dfrac{\ddot{z}}{z} &= \left[ \dfrac{\ddot{r}}{r} - \dot{\theta}^2 \right] + i \left[ \ddot{\theta} + \dfrac{2 \dot{\theta} \dot{r}}{r} \right] \end{align}

We can see a direct relation between the real and imaginary parts of the above equations:

r3˙r3=σθ3˙=ωr3¨r3=σ2θ3¨=0\begin{align} \dfrac{\dot{r_3}}{r_3} &= \sigma\\ \dot{\theta_3} &= \omega\\ \dfrac{\ddot{r_3}}{r_3} &= \sigma^2\\ \ddot{\theta_3} &= 0 \end{align}

This can also be seen in another way:

z3(t)=r3(t)eiθ3(t) z3(t)=e(σ+iω)tz3(t)=eσteiωt r3(t)=eσt,θ3(t)=ωt\begin{align} z_3(t) &= r_3(t) e^{i \theta_3(t) }\\~\\ z_3(t) &= e^{(\sigma + i \omega) t}\\ z_3(t) &= e^{\sigma t} e^{i \omega t}\\~\\ \rightarrow r_3(t) &= e^{\sigma t}, \quad \theta_3(t) = \omega t \end{align}

then taking the derivatives from there.

From the polar derivatives in Eq. (26), we can make some statements about the evolution of the path traced by z3z_3 over time. First, the sign of σ\sigma is of paramount importance to whether r3r_3 decays to zero or grows to infinity.

If σ>0\sigma > 0, then r3r_3 grows to infinity.

If σ<0\sigma < 0, then r3r_3 decays to zero.

If σ=0\sigma = 0, then r3r_3 remains constant, and z3z_3 proceeds in an infinite circle.

For the angular term, ω\omega is simply the angular frequency of the oscillations intrinsic to z3z_3.

A negative ω\omega term is possible here, it flips the propogation of the spiral from counterclockwise to clockwise.

A negative ω\omega has no impact on the decay rate r3˙\dot{r_3}. It does flip the sign of the angular acceleration term 2σω2 \sigma \omega, which is necessary to ensure decay for a negative σ\sigma or growth for a positive σ\sigma.

1.4Question 4: Electric field propogating in 2D

In class, we assumed that an plane wave was propogating in the k^=z^\hat{k} = \hat{z} direction, with the electric field oscillating in the x^\hat{x} direction. Suppose now that the is oscillating in the 12(x^+y^)\dfrac{1}{\sqrt{2}} (\hat{x} + \hat{y}) direction:

E=E0cos(krωt)12(x^+y^)\begin{align} \boldsymbol{E} = E_0 \cos(\vec{k} \cdot \vec{r} - \omega t) \dfrac{1}{\sqrt{2}} (\hat{x} + \hat{y}) \end{align}

Question 4A:

What direction of propogation k^\hat{k} and magnetic field vector B\boldsymbol{B} are now possible?
Draw a diagram of the electric field vector and the plane of propogation.

Question 4B:

What are the expressions for k^\hat{k} and B\boldsymbol{B} if we constrain the direction of propogating to be (partially) in the positive x^\hat{x} direction?

Question 4A Solution

The electric field oscillates in the n^=12(x^+y^)\hat{n} = \dfrac{1}{\sqrt{2}}(\hat{x} + \hat{y}) direction.

The direction of propogation of the wave must be perpendicular to that vector, in other words, anywhere in the plane normal to n^\hat{n}.

The equation for a plane is

A(xx0)+B(yy0)+C(zz0)=0,A (x - x_0) + B (y - y_0) + C (z - z_0) = 0,

where p={x0,y0,z0}\vec{p} = \{x_0, y_0, z_0\} is a point in the plane, and n^={A,B,C}\hat{n} = \{A, B, C\} is the normal vector out of the plane.

We set p={0,0,0}\vec{p} = \{0, 0, 0\} for simplicity, and n^=12{1,1,0}\hat{n} = \dfrac{1}{\sqrt{2}}\{1, 1, 0\}, then solve. We find that

y=ABx=xy = - \dfrac{A}{B} x = - x

for all zz, so the plane of propogation is simply

xy=0z.x - y = 0 \quad \forall z.

The diagram of this solution is plotted below.

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.add_subplot(projection='3d')

# Define the plane (e.g., normal vector and a point)
normal = 1/np.sqrt(2)*np.array([1, 1, 0])
point = np.array([0, 0, 0])

# Create a meshgrid for the plane
size = 2
xx, zz = np.meshgrid(np.arange(-size, size, 0.5), np.arange(-size, size, 0.5))

# Calculate the Z values for the plane
# Equation of a plane: ax + by + cz = d, where d = normal . point
d = np.dot(normal, point)
yy = -normal[1] / normal[0] * xx

# Plot the plane
ax.plot_surface(xx, yy, zz, alpha=0.5, color='blue',label="Propogation Plane")

ax.quiver(0, 0, 0, normal[0], normal[1], normal[2], length=1.0, normalize=False, color='red', label=r"$\vec{E}$")

ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_title('3D Plane and Arrow')
ax.legend()

# ax.set_axis_off()

plt.show()
Loading...

Question 4B Solution

If we constrain the wave to propogate in the positive x^\hat{x} direction, then from our result above,

k^=12(x^y^).\hat{k} = \dfrac{1}{\sqrt{2}} (\hat{x} - \hat{y}).

And since we know that

B=1c(k^×E)\boldsymbol{B} = \dfrac{1}{c}(\hat{k} \times \boldsymbol{E})

we can calculate the curl of the field like

x^y^z^1212012120\begin{align} \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\[6pt] \dfrac{1}{\sqrt{2}} & -\dfrac{1}{\sqrt{2}} & 0 \\[12pt] \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} & 0 \end{vmatrix} \end{align}

which comes out to be exactly equal to +z^+\hat{z}:

B=E0ccos(krωt)z^\boldsymbol{B} = \dfrac{E_0}{c}\cos{(\vec{k} \cdot \vec{r} - \omega t)} \hat{z}

1.5Question 5: Spherical Plane Wave Intensity and Radiation Pressure

Suppose you have a sinusoidal spherical plane wave source a distance dd away along the z^\hat{z} axis from a cylindrical mirror with radius aa.
Use the center of the spherical wave as the origin, and the distance from that center as the variable rr.
Assume that the cylinder is in the xyxy plane.
Also assume that the spherical wave is emitting total power PtotalP_\mathrm{total} in all directions.

Question 5A:

What is the Poynting vector S\boldsymbol{S} for the spherical waves?
Hint: Equation 9.49 of Griffith’s E&M may be helpful here

Question 5B:

What is the Poynting vector S\boldsymbol{S} incident on the mirror center?
What about the mirror edge?
Write an expression for the Poynting vector incident anywhere on the mirror’s surface.

Question 5C:

Using your result from Question 5B, find the intensity II incident on the mirror.

Question 5D:

Find the total power PP incident on the mirror.
Compare to the total power emitted by the spherical plane wave.

Question 5E:

Calculate the radiation pressure pradp_\mathrm{rad} incident on the mirror.
Also find the radiation pressure force FradF_\mathrm{rad}.
Assume the mirror is a perfect reflector.
If the mirror has a mass mm, what is its acceleration?

1.6Question 5A Solution

First, we consider the direction the wave is propogating in. A spherical wave is conveniently propogating in the radial r^\hat{r} direction. For ease of the next few questions, we define the r^\hat{r} vector with respect to two angles θ,ϕ\theta, \phi, such that if θ=0\theta = 0 and ϕ=0\phi = 0, r^=z^\hat{r} = \hat{z}:

r^=cosθcosϕ z^+cosθsinϕ x^+sinθ y^\begin{align} \hat{r} = \cos\theta \cos\phi~\hat{z} + \cos\theta \sin\phi~\hat{x} + \sin\theta~\hat{y} \end{align}

From this definition, if θ=0\theta = 0 and ϕ=π2\phi = \dfrac{\pi}{2}, r^=x^\hat{r} = \hat{x}
and if θ=π2\theta = \dfrac{\pi}{2}, r^=y^\hat{r} = \hat{y}.

Next, we write what the electric and magnetic fields are for a sinusoidal spherical plane wave. The electric field will be polarized in some n^\hat{n} direction, which must be orthogonal to the radial direction r^\hat{r}. We don’t bother to define n^\hat{n}, although we could using Eq. (36).

E=E0rcos(krωt)n^B=E0crcos(krωt)(r^×n^)\begin{align} \boldsymbol{E} &= \dfrac{E_0}{r} \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) \hat{n}\\ \boldsymbol{B} &= \dfrac{E_0}{c r} \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) (\hat{r} \times \hat{n}) \end{align}

where the magnetic field direction (r^×n^)(\hat{r} \times \hat{n}) is just the remaining orthogonal direction to r^\hat{r} and n^\hat{n}. We also note that the phase term kr=kr\boldsymbol{k} \cdot \boldsymbol{r} = k r, since k^=r^\hat{k} = \hat{r}.

Then the Poynting vector S\boldsymbol{S} becomes

S=1μ0(E×B)S=1μ0((E0rcos(krωt)n^)×(E0crcos(krωt)(r^×n^)))S=E02cμ01r2cos(krωt)2(n^×(r^×n^))S=ϵ0E021r2cos(krωt)2(n^×(r^×n^))\begin{align} \boldsymbol{S} &= \dfrac{1}{\mu_0} (\boldsymbol{E} \times \boldsymbol{B})\\ \boldsymbol{S} &= \dfrac{1}{\mu_0} \left( \left(\dfrac{E_0}{r} \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) \hat{n} \right) \times \left( \dfrac{E_0}{c r} \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) (\hat{r} \times \hat{n})\right) \right)\\ \boldsymbol{S} &= \dfrac{E_0^2}{c \mu_0} \dfrac{1}{r^2} \cos(k r - \omega t)^2 (\hat{n} \times (\hat{r} \times \hat{n}))\\ \boldsymbol{S} &= \epsilon_0 E_0^2 \dfrac{1}{r^2} \cos(k r - \omega t)^2 (\hat{n} \times (\hat{r} \times \hat{n})) \end{align}

where we’ve used that c2=1ϵ0μ0c^2 = \dfrac{1}{\epsilon_0 \mu_0} in the last line.

Remembering BAC CAB:

A×(B×C)=B(AC)C(AB)\begin{align} \boldsymbol{A} \times (\boldsymbol{B} \times \boldsymbol{C}) = \boldsymbol{B}(\boldsymbol{A} \cdot \boldsymbol{C}) - \boldsymbol{C}(\boldsymbol{A} \cdot \boldsymbol{B}) \end{align}

yields our solution

S=ϵ0E021r2cos(krωt)2r^\begin{align} \boxed{ \boldsymbol{S} = \epsilon_0 E_0^2 \dfrac{1}{r^2} \cos(k r - \omega t)^2 \hat{r} } \end{align}
%load_ext jupyter_tikz
%%tikz
\begin{tikzpicture}[scale=1.5]
  % Define parameters
  \def\r{4}        % wavefront radius
  \def\d{2}        % distance to cylinder center
  \def\a{0.8}      % cylinder radius
  
  % Wavefront center at origin
  \coordinate (O) at (0, 0);
  \coordinate (C) at (\d, 0);  % cylinder center
  
  % Draw cylinder with front ellipse (facing origin) and back ellipse
  % Front ellipse (facing toward origin)
  \draw[red, thick] (C) ellipse ({0.15*\a} and {\a});
  
  % Back ellipse (receded, smaller horizontal scale)
  \draw[red, thick] (\d + 1.2, -\a) arc(-90:90:{0.15*\a} and {\a});
  % \draw[red, dashed, thick] (\d + 1.2, -\a) -- (\d + 1.2, \a);  % hidden edge (dashed)
  
  % Connecting lines (top and bottom)
  \draw[red, thick] (\d, \a) -- (\d + 1.2, \a);
  \draw[red, thick] (\d, -\a) -- (\d + 1.2, -\a);
  
  % Draw concentric spherical wavefronts (circular contours)
  \draw[cyan, thin] (0, 0) circle (0.5);
  \draw[cyan, thin] (0, 0) circle (1.0);
  \draw[cyan, thin] (0, 0) circle (1.5);
  \draw[cyan, thin] (0, 0) circle (2.0);
  \draw[cyan, thin] (0, 0) circle (2.5);
  \draw[cyan, thin] (0, 0) circle (3.0);

  % Mark origin
  \filldraw[white] (O) circle (2pt);
  \node[white, below left] at (O) {O};
  
  % Mark cylinder center
  \filldraw[white] (C) circle (1pt);
  
  % Add dimension labels
  \draw[|-|, gray, thin] (0, 0) -- (\d, 0);
  \node[below, gray] at (\d/2, 0) {$d$};
  
  \draw[|-|, gray, thin] (\d + 0.3, 0) -- (\d + 0.3, \a);
  \node[right, gray] at (\d + 0.3, \a/2) {$a$};
  
  % Label wavefront radius
  \draw[gray, thin] (0, 0) -- (\d, \a);
  \node[above, gray] at (\d/2, \a/2) {$r$};
  
\end{tikzpicture}
Loading...

1.7Question 5B Solution

At the center of the cylinder, r=dz^\vec{r} = d \hat{z}.
At the edge of the cyclinder in the y-direction, r=dz^+ay^\vec{r} = d \hat{z} + a \hat{y}.
We can generally write the magnitude of the r=rr^\vec{r} = r \hat{r} as

r=d2+x2+y2.r = \sqrt{d^2 + x^2 + y^2}.

for any location (x,y)(x,y) on the mirror’s surface.

This yields

Center:S(r=d)=ϵ0E021d2cos(kdωt)2z^ Mirror Edge:S(r=d2+a2)=ϵ0E021d2+a2cos(kd2+a2ωt)2(drz^+ary^) Anywhere on Mirror Surface:S(r=d2+x2+y2)=ϵ0E021d2+x2+y2cos(kd2+x2+y2ωt)2(drz^+yry^+xrx^)\begin{align} \mathrm{Center:}& \qquad \boldsymbol{S}(r = d) = \epsilon_0 E_0^2 \dfrac{1}{d^2} \cos(k d - \omega t)^2 \hat{z} \\~\\ \mathrm{Mirror~Edge:}& \qquad \boldsymbol{S}(r = \sqrt{d^2 + a^2}) = \epsilon_0 E_0^2 \dfrac{1}{d^2 + a^2} \cos(k \sqrt{d^2 + a^2} - \omega t)^2 (\dfrac{d}{r} \hat{z} + \dfrac{a}{r} \hat{y})\\~\\ \mathrm{Anywhere~on~Mirror~Surface:}& \qquad \boldsymbol{S}(r = \sqrt{d^2 + x^2 + y^2}) = \epsilon_0 E_0^2 \dfrac{1}{d^2 + x^2 + y^2} \cos(k \sqrt{d^2 + x^2 + y^2} - \omega t)^2 (\dfrac{d}{r} \hat{z} + \dfrac{y}{r} \hat{y} + \dfrac{x}{r} \hat{x}) \end{align}

This means we have a Poynting vector which oscillates spatially across the mirror surface.
These spatial wave front oscillations are very important for raw phase estimates, and are strongly related to the Gouy Phase Accumulation, which will become imporant when calculate higher order mode resonance conditions in optical cavities.

1.8Question 5C Solution

For the intensity II anywhere on the mirror’s surface (x,y)(x,y), we take our final Poynting vector magnitude SS and integrate over one phase cycle in time tt.

To find the Poynting vector magnitude SS, we identify the normal vector to the cylinder surface as z^\hat{z},
then isolate the z^\hat{z} direction by dotting with the Poynting vector S\boldsymbol{S} for Anywhere on the Mirror Surface:

S=Sz^S=ϵ0E02dr3cos(krωt)2\begin{align} S &= \boldsymbol{S} \cdot \hat{z}\\ S &= \epsilon_0 E_0^2 \dfrac{d}{r^3} \cos(k r - \omega t)^2 \end{align}

This appropriately scales for the power incident on mirror at an angle r^z^=cosθcosϕ=dr\hat{r} \cdot \hat{z} = \cos\theta \cos\phi = \dfrac{d}{r}.

Now calculating the intensity over the surface I(x,y)I(x,y)

I(x,y)=SI(x,y)=1T0Tϵ0E02ϵ0E02dr3cos(krωt)2dtI(x,y)=12ϵ0E02dr3I(x,y)=12ϵ0E02d(d2+x2+y2)3/2\begin{align} I(x,y) &= \langle S \rangle\\ I(x,y) &= \dfrac{1}{T} \int_0^{T} \epsilon_0 E_0^2 \epsilon_0 E_0^2 \dfrac{d}{r^3} \cos(k r - \omega t)^2 dt\\ I(x,y) &= \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{d}{r^3}\\ I(x,y) &= \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{d}{(d^2 + x^2 + y^2)^{3/2}} \end{align}

The intensity peaks at x=0x = 0 and y=0y = 0, the nearest locations to the center of the cylinder.

1.9Question 5D Solution

The power incident on the mirror PP is the double integral over the mirror surface out to radius aa:

P=I(x,y)dxdy\begin{align} P = \int \int I(x,y) dx dy \end{align}

We define a radius on the mirror surface

s=xx^+yy^,where s2=x2+y2, and dxdy=sdsdφ\vec{s} = x \hat{x} + y \hat{y}, \text{where}~s^2 = x^2 + y^2,~\text{and}~dx dy = s ds d\varphi

to make our integral easier.

I(x,y)I(x,y) will become a single variable I(s)I(s):

I(x,y)=12ϵ0E02d(d2+x2+y2)3/2I(s)=12ϵ0E02d(d2+s2)3/2\begin{align} I(x,y) &= \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{d}{(d^2 + x^2 + y^2)^{3/2}}\\ I(s) &= \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{d}{(d^2 + s^2)^{3/2}} \end{align}

For the power PP calculation, we have

P=02π0aI(s) sdsdφP=2π0aI(s) sdsP=2π0a12ϵ0E02sd(d2+s2)3/2 dsP=πϵ0E02d0as(d2+s2)3/2 dsP=πϵ0E02d[1d1d2+a2]\begin{align} P &= \int_0^{2\pi} \int_0^{a} I(s)~s ds d\varphi\\ P &= 2\pi \int_0^{a} I(s)~s ds\\ P &= 2\pi \int_0^{a} \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{s d}{(d^2 + s^2)^{3/2}}~ds\\ P &= \pi \epsilon_0 E_0^2 d \int_0^{a} \dfrac{s}{(d^2 + s^2)^{3/2}}~ds\\ P &= \pi \epsilon_0 E_0^2 d \left[ \dfrac{1}{d} - \dfrac{1}{\sqrt{d^2 + a^2}} \right] \\ \end{align}
P=πϵ0E02[1dd2+a2]\begin{align} \boxed{ P = \pi \epsilon_0 E_0^2 \left[ 1 - \dfrac{d}{\sqrt{d^2 + a^2}} \right] } \end{align}

If we let the cylinder radius aa go to infinity, then the right hand term goes to zero and we recover

P(a)=πϵ0E02\boxed{ P(a\rightarrow\infty) = \pi \epsilon_0 E_0^2 }

To get the total power PtotalP_\mathrm{total}, we integrate (40) over one cycle TT to get total intensity Itotal(r)I_\mathrm{total}(r), then spatially over a spherical surface.

Itotal(r)=Sr^Itotal(r)=1T0Tϵ0E021r2cos(krωt)2dtItotal(r)=12ϵ0E021r2\begin{align} I_\mathrm{total}(r) &= \langle \boldsymbol{S} \cdot \hat{r} \rangle\\ I_\mathrm{total}(r) &= \dfrac{1}{T} \int_0^{T} \epsilon_0 E_0^2 \dfrac{1}{r^2} \cos(k r - \omega t)^2 dt\\ I_\mathrm{total}(r) &= \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{1}{r^2} \end{align}

The power calculation is then a double integral over a sphere’s surface: dA=r2sinθdθdϕdA = r^2 \sin\theta d\theta d\phi

Ptotal=Itotal(r)dAPtotal=02π0π12ϵ0E021r2r2sinθdθdϕPtotal=12ϵ0E0202π0πsinθdθdϕPtotal=12ϵ0E02(2π)(2)\begin{align} P_\mathrm{total} &= \int I_\mathrm{total}(r) dA\\ P_\mathrm{total} &= \int_{0}^{2\pi} \int_{0}^{\pi} \dfrac{1}{2} \epsilon_0 E_0^2 \dfrac{1}{r^2} r^2 \sin\theta d\theta d\phi \\ P_\mathrm{total} &= \dfrac{1}{2} \epsilon_0 E_0^2 \int_{0}^{2\pi} \int_{0}^{\pi} \sin\theta d\theta d\phi \\ P_\mathrm{total} &= \dfrac{1}{2} \epsilon_0 E_0^2 (2 \pi) (2) \end{align}

which gives us our total power

Ptotal=2πϵ0E02\begin{align} \boxed{ P_\mathrm{total} = 2 \pi \epsilon_0 E_0^2 } \end{align}

This makes sense: we should catch half of the power as we let the radius of the cylinder go to infinity, and we have

P(a)Ptotal=πϵ0E022πϵ0E02P(a)Ptotal=12\begin{align} \dfrac{P(a\rightarrow\infty)}{P_\mathrm{total}} &= \dfrac{\pi \epsilon_0 E_0^2}{2 \pi \epsilon_0 E_0^2}\\ \dfrac{P(a\rightarrow\infty)}{P_\mathrm{total}} &= \dfrac{1}{2} \end{align}

1.10Question 5E Solution

For the radiation pressure, we have

prad=2Icprad(s)=1cϵ0E02d(d2+s2)3/2\begin{align} p_\mathrm{rad} &= 2 \dfrac{I}{c}\\ p_\mathrm{rad}(s) &= \dfrac{1}{c} \epsilon_0 E_0^2 \dfrac{d}{(d^2 + s^2)^{3/2}} \end{align}

where the additional factor of 2 comes from the reflection off the mirror.

For the force calculation FradF_\mathrm{rad}, we use the power incident on the mirror PP:

Frad=2PcFrad=2cπϵ0E02[1dd2+a2]\begin{align} F_\mathrm{rad} &= \dfrac{2 P}{c}\\ F_\mathrm{rad} &= \dfrac{2}{c} \pi \epsilon_0 E_0^2 \left[ 1 - \dfrac{d}{\sqrt{d^2 + a^2}} \right] \end{align}

The acceleration of the mirror

arad=Fradmarad=2cmπϵ0E02[1dd2+a2]\begin{align} a_\mathrm{rad} &= \dfrac{F_\mathrm{rad}}{m}\\ a_\mathrm{rad} &= \dfrac{2}{c m} \pi \epsilon_0 E_0^2 \left[ 1 - \dfrac{d}{\sqrt{d^2 + a^2}} \right] \end{align}