

**Quiz 3: Lasers**  
February 11, 2026  
Lasers and Optomechanics

Name: \_\_\_\_\_

**Components of a Laser**

What are the three components of any laser?

- 1.
- 2.
- 3.

**Stimulated Emission Copies**

What are the four aspects of incoming laser light copied in stimulated emission?

- 1.
- 2.
- 3.
- 4.

**Absorption**

We can model the absorption  $\alpha(\omega)$  of an electric field  $E(z) = E_0 e^{-\alpha(\omega)z}$  over distance  $z$  through some medium, where

$$\alpha(\omega) = \frac{\lambda^2}{4\pi} \frac{\gamma_{\text{rad}}}{\Delta\omega_a} \frac{N_1 - N_2}{1 + 4 \left( \frac{\omega_{21} - \omega}{\Delta\omega_a} \right)^2} \quad (1)$$

where  $\lambda$  is the laser wavelength,

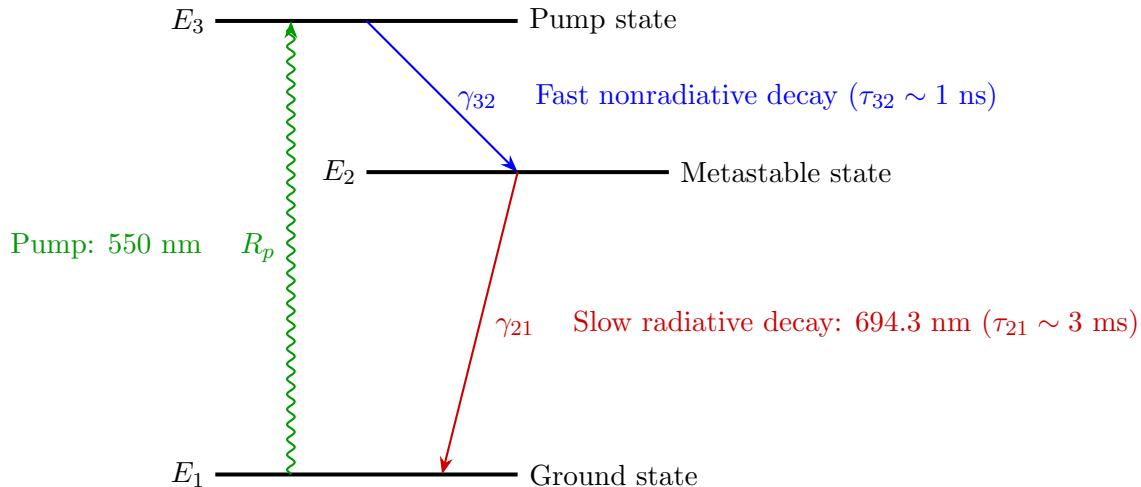
$\gamma_{\text{rad}}$  is the radiative decay rate,

$\Delta\omega_a$  is the atomic linewidth,

and  $\omega_{21}$  is the center frequency of the atomic line.

1. What happens to our absorption expression in Eq. 1 if  $N_2 > N_1$ ?
2. What is this status when  $N_2 > N_1$ ?

### Three Level Atomic Rate Equations for Pumped System


The three-level lasing system for ruby is reproduced below.

Suppose the occupancies for the three energy levels  $E_1, E_2, E_3$  are  $N_1, N_2, N_3$ .

Assume we have some pump transition rate  $R_p$  from the first energy level to the third energy level, as well as relaxation rates  $\gamma_{32}$  and  $\gamma_{21}$  for transitions  $E_3 \rightarrow E_2$  and  $E_2 \rightarrow E_1$ .

Assume no lasing action.

### Ruby Laser ( $\text{Cr}^{3+} : \text{Al}_2\text{O}_3$ )



1. What is the *quantum defect* associated with ruby?
2. Write out the atomic rate equation for the third energy level occupancy  $\frac{dN_3}{dt}$ , assuming a pump but no lasing. Only include the  $3 \rightarrow 2$  spontaneous emission rate  $\gamma_{32}$  (i.e. don't worry about the spontaneous emission to the ground state  $\gamma_{31}$ ).
3. Write out the atomic rate equation for the second energy level occupancy  $\frac{dN_2}{dt}$ , assuming no lasing.
4. Write out the atomic rate equation for the second energy level occupancy  $\frac{dN_1}{dt}$ , assuming no lasing.
5. Assume now your pumped system has reached steady-state. What are the steady-state occupancy ratios  $\frac{N_1}{N_3}$  and  $\frac{N_2}{N_3}$  of your system?
6. Calculate  $\frac{N_2 - N_1}{N_3}$  for the steady state.
7. When is population inversion possible for your result above?